NEWS RELEASE
UNDER EMBARGO UNTIL FEBRUARY 5, 2016, 12:01 AM ET

Contacts:
Eileen Leahy
Elsevier
Tel: 732-238-3628
jmdmedia@elsevier.com

Dr. Chhavi Chauhan
Scientific Editor
The Journal of Molecular Diagnostics
Tel: 301-634-7953
cchauhan@asip.org

New Assay Detects Persistent Disease in Leukemia Patients
Thought to Be in Remission
Report in The Journal of Molecular Diagnostics Describes a More Sensitive and Personalized Method of Identifying Patients Likely to Relapse Compared to the Current Gold Standard

Philadelphia, PA, February 5, 2016 – The outcomes of chronic myeloid leukemia (CML) have dramatically improved as the result of tyrosine kinase inhibitor (TKI) treatment. Use of a TKI regimen can lower the blood CML biomarker to levels imperceptible by current detection methods. For patients in “molecular remission,” however, uncertainties remain regarding whether they will relapse or if treatment should be discontinued. A study in The Journal of Molecular Diagnostics describes a new personalized DNA-based digital assay that detects persistent disease in 81% of samples taken from a group of patients thought to be in remission.

“If validated in clinical trials of stopping TKIs, this technique will permit a more personalized approach to recommendations for dose reduction or drug cessation in individual patients, ensuring that therapy is withdrawn only from patients with the highest chance of long-term remission,” explained lead investigator and head of department Jane F. Apperley, MD, PhD, FRCPath, of the Centre for Haematology, Imperial College (London). Indeed, studies have shown that 60% of CML patients who achieve sustained undetectable levels of BCR-ABL1 transcripts—the hallmark biomarker of CML—experience disease recurrence after TKI treatment is withdrawn.

Investigators compared the sensitivity of the new technique, DNA-based digital PCR (dPCR) assay, to three other quantitative PCR methods currently used to measure residual CML, including reverse transcriptase-quantitative PCR (RT-qPCR), quantitative PCR (qPCR), and reverse transcriptase-digital PCR (RT-dPCR). RT-qPCR is currently the most widely used method for monitoring residual disease in CML patients.
Thirty-six samples were taken from six patients with early CML who were thought to be in deep molecular remission, as indicated by RT-qPCR results. Repeat analysis using dPCR with preamplification detected persistent disease in 81% of the samples. In comparison, the detection rate was 25% using RT-dPCR and 19% for qPCR. “We conclude that dPCR for BCR-ABL1 DNA is the most sensitive available method of residual disease detection in CML and may prove useful in the management of TKI withdrawal,” stated Dr. Apperley.

The new assay has the potential to dramatically impact CML management. Immediately after CML diagnosis, the patient’s genomic breakpoints would be identified, enabling the design of a patient-specific assay. The patient’s response to therapy would be monitored using standard RT-qPCR until reaching molecular remission. At that point, routine monitoring would be augmented with dPCR, allowing better-informed treatment decisions and improved patient management.

According to Dr. Apperley, the new method improves on previous methodologies in two key areas. First, dPCR is a DNA-based method that allows identification of BCR-ABL1 fusion junctions by targeted next-generation sequencing. This enables the rapid generation of high-performing DNA-based hydrolysis probe assays that are specific to the individual molecular footprint of each patient’s CML clone, although the number and location of fusion junctions may vary among patients. The second advancement afforded by the new method relates to the greater sensitivity provided by the dPCR platform. “The technique we describe, with which we successfully mapped a disease-specific junction in all patients tested, is relatively simple, cost effective, and suited to a high-throughput laboratory,” noted Dr. Apperley.

#

NOTES FOR EDITORS

Full text of this study is available to credentialed journalists upon request; contact Eileen Leahy at 732-238-3628 or jmdmedia@elsevier.com. Journalists wishing to interview the authors may contact Mary Alikian at m.alikian@imperial.ac.uk or Julian Quigley at +44 20 8943 8491; Julian.Quigley@lgcgroup.com.

This research was supported by the LEUKA charity, NIHR Biomedical Research Center Funding Scheme, and the Imperial College High Performance Computing Service.

ABOUT THE JOURNAL OF MOLECULAR DIAGNOSTICS

The Journal of Molecular Diagnostics, (http://jmd.amjpathol.org), the official publication of the Association for Molecular Pathology, co-owned by the American Society for Investigative Pathology, and published by Elsevier, Inc., seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome review articles that contain: novel discoveries or clinicopathologic correlations, including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods for diagnosis or monitoring of disease or disease predisposition.
The Journal of Molecular Diagnostics, with an Impact Factor of 4.851, ranks 8th among 75 journals in Pathology, according to 2014 Journal Citation Reports® Thomson Reuters, 2015.

ABOUT ELSEVIER
Elsevier (www.elsevier.com) is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, deliver better care, and sometimes make groundbreaking discoveries that advance the boundaries of knowledge and human progress. Elsevier provides web-based, digital solutions — among them ScienceDirect (www.sciencedirect.com), Scopus (www.scopus.com), Elsevier Research Intelligence (www.elsevier.com/research-intelligence), and ClinicalKey (www.clinicalkey.com) — and publishes over 2,500 journals, including The Lancet (www.thelancet.com) and Cell (www.cell.com), and more than 33,000 book titles, including a number of iconic reference works. Elsevier is part of RELX Group plc (www.relxgroup.com), a world-leading provider of information solutions for professional customers across industries. www.elsevier.com